direct product, metabelian, supersoluble, monomial, A-group
Aliases: S32×Dic3, D6.7S32, C3⋊Dic3⋊11D6, (C3×Dic3)⋊7D6, (S3×C6).17D6, C33⋊2(C22×C4), C33⋊5C4⋊1C22, (C32×C6).1C23, C32⋊4(C22×Dic3), (C32×Dic3)⋊9C22, C2.1S33, C3⋊5(C4×S32), (C3×S32)⋊3C4, C6.1(C2×S32), (S32×C6).3C2, (C2×S32).2S3, C3⋊1(C2×S3×Dic3), (C3×S3)⋊3(C4×S3), C32⋊11(S3×C2×C4), (C3×S3×Dic3)⋊9C2, C33⋊9(C2×C4)⋊9C2, (Dic3×C3⋊S3)⋊6C2, C3⋊S3⋊2(C2×Dic3), (S3×C3⋊Dic3)⋊7C2, (C2×C3⋊S3).27D6, (S3×C3×C6).1C22, (S3×C32)⋊2(C2×C4), (C3×S3)⋊1(C2×Dic3), (C6×C3⋊S3).14C22, (C3×C6).50(C22×S3), (C3×C3⋊Dic3)⋊8C22, (C3×C3⋊S3)⋊1(C2×C4), SmallGroup(432,594)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — S32×Dic3 |
Generators and relations for S32×Dic3
G = < a,b,c,d,e,f | a3=b2=c3=d2=e6=1, f2=e3, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >
Subgroups: 1244 in 270 conjugacy classes, 74 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, S3, C6, C6, C6, C2×C4, C23, C32, C32, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C22×C4, C3×S3, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C22×C6, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, S32, S3×C6, S3×C6, C2×C3⋊S3, C62, S3×C2×C4, C22×Dic3, S3×C32, C3×C3⋊S3, C32×C6, S3×Dic3, S3×Dic3, C6.D6, S3×C12, C6×Dic3, C4×C3⋊S3, C2×C3⋊Dic3, C2×S32, S3×C2×C6, C32×Dic3, C3×C3⋊Dic3, C33⋊5C4, C3×S32, S3×C3×C6, C6×C3⋊S3, C4×S32, C2×S3×Dic3, C3×S3×Dic3, S3×C3⋊Dic3, Dic3×C3⋊S3, C33⋊9(C2×C4), S32×C6, S32×Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C4×S3, C2×Dic3, C22×S3, S32, S3×C2×C4, C22×Dic3, S3×Dic3, C2×S32, C4×S32, C2×S3×Dic3, S33, S32×Dic3
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 17 15)(14 18 16)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 45 47)(44 46 48)
(1 16)(2 17)(3 18)(4 13)(5 14)(6 15)(7 22)(8 23)(9 24)(10 19)(11 20)(12 21)(25 40)(26 41)(27 42)(28 37)(29 38)(30 39)(31 46)(32 47)(33 48)(34 43)(35 44)(36 45)
(1 5 3)(2 6 4)(7 9 11)(8 10 12)(13 17 15)(14 18 16)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 39 41)(38 40 42)(43 47 45)(44 48 46)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 8 4 11)(2 7 5 10)(3 12 6 9)(13 20 16 23)(14 19 17 22)(15 24 18 21)(25 32 28 35)(26 31 29 34)(27 36 30 33)(37 44 40 47)(38 43 41 46)(39 48 42 45)
G:=sub<Sym(48)| (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,45,47)(44,46,48), (1,16)(2,17)(3,18)(4,13)(5,14)(6,15)(7,22)(8,23)(9,24)(10,19)(11,20)(12,21)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45), (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,39,41)(38,40,42)(43,47,45)(44,48,46), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,8,4,11)(2,7,5,10)(3,12,6,9)(13,20,16,23)(14,19,17,22)(15,24,18,21)(25,32,28,35)(26,31,29,34)(27,36,30,33)(37,44,40,47)(38,43,41,46)(39,48,42,45)>;
G:=Group( (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,45,47)(44,46,48), (1,16)(2,17)(3,18)(4,13)(5,14)(6,15)(7,22)(8,23)(9,24)(10,19)(11,20)(12,21)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45), (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,39,41)(38,40,42)(43,47,45)(44,48,46), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,8,4,11)(2,7,5,10)(3,12,6,9)(13,20,16,23)(14,19,17,22)(15,24,18,21)(25,32,28,35)(26,31,29,34)(27,36,30,33)(37,44,40,47)(38,43,41,46)(39,48,42,45) );
G=PermutationGroup([[(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,17,15),(14,18,16),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,45,47),(44,46,48)], [(1,16),(2,17),(3,18),(4,13),(5,14),(6,15),(7,22),(8,23),(9,24),(10,19),(11,20),(12,21),(25,40),(26,41),(27,42),(28,37),(29,38),(30,39),(31,46),(32,47),(33,48),(34,43),(35,44),(36,45)], [(1,5,3),(2,6,4),(7,9,11),(8,10,12),(13,17,15),(14,18,16),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,39,41),(38,40,42),(43,47,45),(44,48,46)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,8,4,11),(2,7,5,10),(3,12,6,9),(13,20,16,23),(14,19,17,22),(15,24,18,21),(25,32,28,35),(26,31,29,34),(27,36,30,33),(37,44,40,47),(38,43,41,46),(39,48,42,45)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 6D | 6E | 6F | 6G | ··· | 6N | 6O | 6P | 6Q | 6R | 6S | 6T | 6U | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 3 | 3 | 3 | 3 | 9 | 9 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 3 | 3 | 9 | 9 | 9 | 9 | 27 | 27 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | ··· | 6 | 8 | 12 | 12 | 12 | 12 | 18 | 18 | 6 | 6 | 6 | 6 | 12 | 12 | 18 | 18 | 18 | 18 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | - | + | + | + | + | - | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | S3 | D6 | D6 | Dic3 | D6 | D6 | C4×S3 | S32 | S32 | S3×Dic3 | C2×S32 | C4×S32 | S33 | S32×Dic3 |
kernel | S32×Dic3 | C3×S3×Dic3 | S3×C3⋊Dic3 | Dic3×C3⋊S3 | C33⋊9(C2×C4) | S32×C6 | C3×S32 | S3×Dic3 | C2×S32 | C3×Dic3 | C3⋊Dic3 | S32 | S3×C6 | C2×C3⋊S3 | C3×S3 | Dic3 | D6 | S3 | C6 | C3 | C2 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 8 | 2 | 1 | 2 | 2 | 4 | 4 | 1 | 8 | 1 | 2 | 4 | 3 | 2 | 1 | 1 |
Matrix representation of S32×Dic3 ►in GL6(𝔽13)
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
S32×Dic3 in GAP, Magma, Sage, TeX
S_3^2\times {\rm Dic}_3
% in TeX
G:=Group("S3^2xDic3");
// GroupNames label
G:=SmallGroup(432,594);
// by ID
G=gap.SmallGroup(432,594);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,58,298,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^3=d^2=e^6=1,f^2=e^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations